本文整理汇总了Python中dragnn.python.spec_builder.complete_master_spec方法的典型用法代码示例。如果您正苦于以下问题:Python spec_builder.complete_master_spec方法的具体用法?Python spec_builder.complete_master_spec怎么用?Python spec_builder.complete_master_spec使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类dragnn.python.spec_builder
的用法示例。
在下文中一共展示了spec_builder.complete_master_spec方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: load_model
# 需要导入模块: from dragnn.python import spec_builder [as 别名]
# 或者: from dragnn.python.spec_builder import complete_master_spec [as 别名]
def load_model(base_dir, master_spec_name, checkpoint_name):
"""
Function to load the syntaxnet models. Highly specific to the tutorial
format right now.
"""
# Read the master spec
master_spec = spec_pb2.MasterSpec()
with open(os.path.join(base_dir, master_spec_name), "r") as f:
text_format.Merge(f.read(), master_spec)
spec_builder.complete_master_spec(master_spec, None, base_dir)
logging.set_verbosity(logging.WARN) # Turn off TensorFlow spam.
# Initialize a graph
graph = tf.Graph()
with graph.as_default():
hyperparam_config = spec_pb2.GridPoint()
builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)
# This is the component that will annotate test sentences.
annotator = builder.add_annotation(enable_tracing=True)
builder.add_saver() # "Savers" can save and load models; here, we're only going to load.
sess = tf.Session(graph=graph)
with graph.as_default():
#sess.run(tf.global_variables_initializer())
#sess.run('save/restore_all', {'save/Const:0': os.path.join(base_dir, checkpoint_name)})
builder.saver.restore(sess, os.path.join(base_dir, checkpoint_name))
def annotate_sentence(sentence):
with graph.as_default():
return sess.run([annotator['annotations'], annotator['traces']],
feed_dict={annotator['input_batch']: [sentence]})
return annotate_sentence
开发者ID:hltcoe,项目名称:PredPatt,代码行数:34,代码来源:ParseyPredFace.py示例2: load_model
# 需要导入模块: from dragnn.python import spec_builder [as 别名]
# 或者: from dragnn.python.spec_builder import complete_master_spec [as 别名]
def load_model(self,base_dir, master_spec_name, checkpoint_name):
# Read the master spec
master_spec = spec_pb2.MasterSpec()
with open(os.path.join(base_dir, master_spec_name), "r") as f:
text_format.Merge(f.read(), master_spec)
spec_builder.complete_master_spec(master_spec, None, base_dir)
logging.set_verbosity(logging.WARN) # Turn off TensorFlow spam.
# Initialize a graph
graph = tf.Graph()
with graph.as_default():
hyperparam_config = spec_pb2.GridPoint()
builder = graph_builder.MasterBuilder(master_spec, hyperparam_config)
# This is the component that will annotate test sentences.
annotator = builder.add_annotation(enable_tracing=True)
builder.add_saver() # "Savers" can save and load models; here, we're only going to load.
sess = tf.Session(graph=graph)
with graph.as_default():
# sess.run(tf.global_variables_initializer())
# sess.run('save/restore_all', {'save/Const:0': os.path.join(base_dir, checkpoint_name)})
builder.saver.restore(sess, os.path.join(base_dir, checkpoint_name))
def annotate_sentence(sentence):
with graph.as_default():
return sess.run([annotator['annotations'], annotator['traces']],
feed_dict={annotator['input_batch']: [sentence]})
return annotate_sentence
开发者ID:ljm625,项目名称:syntaxnet-rest-api,代码行数:31,代码来源:dragnn_parser.py示例3: export
# 需要导入模块: from dragnn.python import spec_builder [as 别名]
# 或者: from dragnn.python.spec_builder import complete_master_spec [as 别名]
def export(master_spec_path, params_path, resource_path, export_path,
export_moving_averages):
"""Restores a model and exports it in SavedModel form.
This method loads a graph specified by the spec at master_spec_path and the
params in params_path. It then saves the model in SavedModel format to the
location specified in export_path.
Args:
master_spec_path: Path to a proto-text master spec.
params_path: Path to the parameters file to export.
resource_path: Path to resources in the master spec.
export_path: Path to export the SavedModel to.
export_moving_averages: Whether to export the moving average parameters.
"""
# Old CoNLL checkpoints did not need a known-word-map. Create a temporary if
# that file is missing.
if not tf.gfile.Exists(os.path.join(resource_path, 'known-word-map')):
with tf.gfile.FastGFile(os.path.join(resource_path, 'known-word-map'),
'w') as out_file:
out_file.write('This file intentionally left blank.')
graph = tf.Graph()
master_spec = spec_pb2.MasterSpec()
with tf.gfile.FastGFile(master_spec_path) as fin:
text_format.Parse(fin.read(), master_spec)
# This is a workaround for an issue where the segmenter master-spec had a
# spurious resource in it; this resource was not respected in the spec-builder
# and ended up crashing the saver (since it didn't really exist).
for component in master_spec.component:
del component.resource[:]
spec_builder.complete_master_spec(master_spec, None, resource_path)
# Remove '/' if it exists at the end of the export path, ensuring that
# path utils work correctly.
stripped_path = export_path.rstrip('/')
saver_lib.clean_output_paths(stripped_path)
short_to_original = saver_lib.shorten_resource_paths(master_spec)
saver_lib.export_master_spec(master_spec, graph)
saver_lib.export_to_graph(master_spec, params_path, stripped_path, graph,
export_moving_averages)
saver_lib.export_assets(master_spec, short_to_original, stripped_path)
开发者ID:rky0930,项目名称:yolo_v2,代码行数:47,代码来源:conll_checkpoint_converter.py本文标签属性:
示例:示例英语
代码:代码大全可复制
Python:python什么意思